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Nucleation modes in ferromagnetic prolate spheroids
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Received 27 May 1997

Abstract. Magnetization reversal in a perfect ferromagnetic prolate spheroid, with no surface
anisotropy, is known to start from nucleation either by coherent rotation (for small radii), or by
the magnetization curling mode (above a certain size), but the possibility of a third mode has
never been ruled out. It is rigorously proved here that there can be no third switching mode if
the aspect ratio is not larger than 500:1, and even for larger ratios it may at most exist for a
very limited size range.

1. Introduction

When a sufficiently large magnetic field is applied to a ferromagneticellipsoid, it becomes
saturated, that is all of the spins are aligned along the direction of this field. Therefore, it is
convenient to start the calculations of the hysteresis curve from this well-defined saturated
state in a large field, from which the field is then reduced. Thus, the first step of the theory
is to calculate the field at which some sort of deviation from the saturated state just starts,
and this step is known [1] as thenucleation problem.

In the particular case of an ellipsoid of revolution, with the magnetic field applied parallel
to its long axis, which is also an easy axis for the magnetocrystalline anisotropy, and when
there is no surface anisotropy, the nucleation problem has been reduced to three possible
eigenmodes. That is, it has beenproved analytically [1] that out of the infinite number of
possible modes, nucleation can at most take place in one of these three eigenmodes. One
of them is known as the ‘coherent rotation’ mode, and another is called the ‘magnetization
curling’ mode. The third one will be referred to here as the ‘buckling mode’, for lack
of a better name, even though this name was originally used [1] to describe a certain
configuration in aninfinite cylinder only.

It has also been proved that the third, or buckling, mode is physically inaccessible for all
oblate spheroids,and for prolate spheroids whose aspect ratio is less than 4.6:1 [1], leaving
only the curling and the coherent rotation as possible reversal modes. For more elongated
prolate spheroids, the question of which mode may take place remained essentially open,
even though there were some indications [2] that the bucklingmay be ruled out. The
problem of what might actually happen in more elongated ellipsoids remained dormant,
but it has become more practical now, with some recent experiments [3–5] on very small,
isolated ferromagnetic particles, which are also extremely elongated.

It is the purpose of the present paper to extend the proof of the non-existence of a third
nucleation mode in a prolate spheroid to much larger aspect ratios than in [2]. The technique
used here is similar to the one in [2], and uses a very powerful tool originally invented
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[6, 7] by Brown. It is based on calculating a rigorouslower bound to the magnetostatic
energy, thus avoiding the highly complicated evaluation of its actual value. The present
lower bound proves that nucleation by this buckling mode is more difficult than by curling
or by coherent rotation, if the aspect ratio is less than about 500:1, which includes all prolate
spheroids that may be made in practice. Even this limit is not essential, and a method is
given here which allows a relatively easy extension to still larger aspect ratios, if it ever
becomes necessary.

2. Nucleation

Consider a homogeneous, ferromagnetic prolate spheroid, whose semi-minor axis isR, and
whose aspect ratio ism. Let a homogeneous magnetic field,H, be applied parallel to the
long ellipsoidal axis, which is taken as thez-axis in a system of cylindrical coordinates,r,
z, andφ. It is assumed that thisz is also an easy axis for the (volume) anisotropy, and that
there is no surface anisotropy.

The basic definition of the nucleation process calls for applying first a field along+z,
which is large enough to saturate the ellipsoid in that direction. This field is slowly reduced
to zero, after which it is slowly increased along−z, until a nucleation field,Hn, is first
encountered. The important point is that only the mode which has the least negativeHn can
ever take place, because after reversal has already started at that field, the initial conditions
of a saturated ellipsoid do not exist any more for modes with more negative nucleation
fields.

The φ-dependence of any mode can be expressed as the Fourier expansion of the
components of the magnetization vector,M ,

Mr = MsAr(r, z) cos(kφ − φk)
Mφ = MsAφ(r, z) sin(kφ − φk)

(1)

whereMs is the saturation magnetization of the ferromagnetic material,k is an integer, and
φk is a constant which depends on the value ofk. It has been shown, however [8], that
all the modes withk > 2 have more negative eigenvalues than the easiest one fork = 0,
which is the curling mode. Therefore, the discussion here is limited to the case in which

k = 1 (2)

for which it is more convenient [8] to replace the functions in (1) by the linear combinations

B1(r, z) = Ar + Aφ and B2(r, z) = Ar − Aφ. (3)

The surface of the ellipsoid is taken asξ = ξ0 in the system of prolate spheroidal
coordinates,ξ , η, φ, defined by

z = f ξη and r = f
√
(ξ2− 1)(1− η2) (4a)

wheref is half the distance between the foci. In this system, the semi-minor axis of the
ellipsoid is

R = f
√
ξ2

0 − 1 (4b)

and the semi-major axis isf ξ0, making the aspect ratio

m = ξ0√
ξ2

0 − 1
. (4c)
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In the following, the semi-minor axis,R, and the applied field,H , are expressed in
terms the reduced quantitiesS andh respectively, defined as

S = RMs

√
2

C
and h = H

2πMs

+ K1

M2
s

− Nz

2π
(5)

where C is the exchange constant,K1 is the coefficient of either uniaxial or cubic
magnetocrystalline anisotropy, andNz is the demagnetizing factor of the ellipsoid parallel
to thez-axis. With this notation, the anisotropy energy,Ea, and the energy of the interaction
with the applied field,EH , at thestart of any deviation from the saturated state, can be
written as

4

πCf
(Ea+ EH) = πS2h

ξ2
0 − 1

∫ 1

−1

∫ ξ0

1
(ξ2− η2)(B2

1 + B2
2) dξ dη. (6)

It should be noted that according to equation (5), this expression already contains the
contribution of the demagnetizing field in the saturated state, before nucleation. Similarly,
the exchange energy of the deviation from the saturated state can be written as

4Eex

πCf
=
∫ 1

−1

∫ ξ0

1

{
(ξ2− 1)

[(
∂B1

∂ξ

)2

+
(
∂B2

∂ξ

)2
]
+ (1− η2)

[(
∂B1

∂η

)2

+
(
∂B2

∂η

)2
]
+ 4(ξ2− η2)B2

1

(ξ2− 1)(1− η2)

}
dξ dη. (7)

To complete the expression for the total energy, it is still necessary to add the magnetostatic
self-energy term to (6) and (7).

3. Magnetostatic energy

This energy term is much more difficult to calculate [9] than the other terms. For this
reason, it is often neglected, even though neglecting it is hardly ever justified, because in
most cases it is thelargest energy term in a ferromagnet. Here it is not neglected, but its
calculation is still avoided by underestimating it, namely replacing it with an expression
which is known to besmaller than its real value. The point is that by using a smaller
energy barrier for a certain mode, nucleation by that mode becomeseasier than when the
correct energy is calculated, thereby making its nucleation field more positive than it is for
the correct mode. But the only mode which has a physical meaning is the one which has
the largest (i.e. the least negative) eigenvalue. Therefore, if such alower bound for the
nucleation field of a certain mode A is proved to be more negative than the true value of
another mode B, then the existence of mode A can be ruled out, because the true value of
its nucleation field is certainly more negative than that of mode B.

The calculation of a lower bound for the magnetostatic energy of the buckling mode is
based on a general theorem of Brown. He proved [6, 7] that the magnetostatic energy,Em,
of a magnetization distributionM (r), in a ferromagnetic body or bodies, always satisfies
the inequality

Em >
∫
M · ∇U dτ − 1

8π

∫
(∇U)2 dτ (8)

where the first integral is over the ferromagnetic material, and the second one is over all
space. The equals sign in (8) is valid if and only ifU is identical to the correct magnetostatic
potential forM (r).
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In this theorem,U can be any arbitrary, continuous function of space, with the only
constraints that it is regular at infinity, and that it has continuous first derivativesinside
the ferromagnetic body (or bodies). Discontinuities of the derivative outside, or on the
boundary of, the ferromagnetic material are allowed. In the present study, however, two
other constraints are imposed. One is the obvious requirement that the functionU has the
φ-dependence of the buckling mode, as implied by equations (1) and (2), namely

U(r, z, φ) = V (r, z) cos(φ − φ1). (9)

The other is that thisV is such that∇2V = 0 everywhere. In the prolate spheroidal
coordinates, this requirement is[

∂

∂ξ
(ξ2− 1)

∂

∂ξ
+ ∂

∂η
(1− η2)

∂

∂η
− ξ2− η2

(ξ2− 1)(1− η2)

]
V = 0. (10)

This choice, already made in [2], is a matter of convenience. It allows analytic integration
of the second term in equation (8).

Some particular solutions of equation (10) were used in [2], and a more general
expression was already given in equation (38) there. After correcting the typographic error,
that general solution for the inside of the ellipsoid can be written in the form

V = bn
√
(ξ2− 1)(1− η2)

dPn(ξ)

dξ

dPn(η)

dη
for ξ 6 ξ0. (11a)

HerePn is the Legendre polynomial of ordern andbn is a constant. At this stage,n is just
an arbitrary integer. It will be determined later. Outside the ferromagnetic spheroid, the
regularity at infinity is obtained by using the spherical harmonics of the second kind,Qn,
instead ofPn. Thus, the solution which passes continuously to (11a) at ξ = ξ0 is

V = bn
√
(ξ2− 1)(1− η2)

P ′n(η)Q
′
n(ξ)P

′
n(ξ0)

Q′n(ξ0)
for ξ > ξ0 (11b)

where the prime denotes the derivative. It is readily seen by substitution and differentiations
that thisV satisfies the differential equation (10), as well as all of the continuity requirements
of Brown’s theorem. The only discontinuity is that of∂V/∂ξ , and only on the boundary,
ξ = ξ0. It should be particularly noted that any linear combination of such solutions, with
different values ofn, is also a solution, because the differential equation (10) is linear.

When all of these equations are substituted into (8), the integration overφ is obvious.
After integrating by parts overξ andη, and using the well-known relations∫ 1

−1
Pn(η)Pk(η) dη = 2

2n+ 1
δk,n (12a)

whereδ is the Kronecker symbol, and

(ξ2− 1)
[
Pn(ξ)Q

′
n(ξ)−Qn(ξ)P

′
n(ξ)

] = −1 (12b)

the second term of (8) can be fully expressed in a closed form. The result is

4

πCf
Em > WLB = 2πSbn√

ξ2
0 − 1

Fn(ξ0)+ 2πn2(n+ 1)2

2n+ 1
b2
n

P ′n(ξ0)

Q′n(ξ0)
(13a)

where

Fn =
∫ 1

−1

∫ ξ0

1

[
gn(ξ, η)B1(ξ, η)+ n2(n+ 1)Gn(ξ, η)B2(ξ, η)

]
dξ dη (13b)
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with

gn(ξ, η) = (ξ2− 1)(1− η2)
[
ξP ′n(η)P

′′
n (ξ)− ηP ′n(ξ)P ′′n (η)

]
(13c)

and

Gn(ξ, η) = ξPn(ξ)Pn−1(η)− ηPn(η)Pn−1(ξ). (13d)

It should be noted that the term withb2
n in (13a) is negative, because normallyP ′n(ξ) is

positive andQ′n(ξ) is negative. Therefore,bn can be chosen so that it maximizes the lower
bound, in order to get the best out of the chosen arbitraryU . The result is

WLB = 2cn[Fn(ξ0)]
2 (14a)

where

cn = − (2n+ 1)πS2

4n2(n+ 1)2(ξ2
0 − 1)

Q′n(ξ0)

P ′n(ξ0)
. (14b)

4. Energy minimization

Adding this lower bound(14a) for the magnetostatic energy to the other energy terms in
(6) and (7), and then minimizing the sum for all possible functionsB1 andB2, leads to the
differential equations[

∇2− 4(ξ2− η2)

(ξ2− 1)(1− η2)
− πS2h

ξ2
0 − 1

(ξ2− η2)

]
B1 = 2cnFngn(ξ, η) (15a)

and [
∇2− πS2h

ξ2
0 − 1

(ξ2− η2)

]
B2 = 2cnn

2(n+ 1)FnGn(ξ, η) (15b)

where the two-dimensional Laplacian in the coordinatesξ andη is

∇2 = ∂

∂ξ
(ξ2− 1)

∂

∂ξ
+ ∂

∂η
(1− η2)

∂

∂η
(15c)

and wheregn andGn are defined in (13c) and (13d) respectively. It also leads to the
boundary conditions(

∂B1

∂ξ

)
ξ=ξ0

=
(
∂B2

∂ξ

)
ξ=ξ0

= 0. (15d)

Consider first the case in whichFn = 0, for which the differential equations (15a) and
(15b) are homogeneous. In this caseB1 should vanish, because it has been proved [8] that
all of the non-zero solutions of the homogeneous equation forB1 have eigenvalues which
are more negative than that of the curling mode. The solution ofB2 can be expanded in
Legendre polynomials, and the most general solution of the homogeneous case can thus be
written as

B1 = 0 and B2 =
∞∑
k=0

ψk(ξ)Pk(η). (16)

Substituting this solution in the homogeneous equations (15a) and (15b), and carrying out
the differentiations with respect toη,
∞∑
k=0

Pk(η)

[
d

dξ
(ξ2− 1)

d

dξ
− k(k + 1)− πS2h

ξ2
0 − 1

(ξ2− η2)

]
ψk(ξ) = 0. (17)
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Let this equation be multiplied byPk′(η), for any arbitrary value ofk′, and then integrated
over η, from −1 to 1. According to equation (12a), for everyk > 0,[

d

dξ
(ξ2− 1)

d

dξ
− k(k + 1)− πS2h

ξ2
0 − 1

ξ2

]
ψk(ξ)+ πS2h

ξ2
0 − 1

[
(k + 1)(k + 2)

(2k + 3)(2k + 5)
ψk+2(ξ)

+ 2k2+ 2k − 1

(2k − 1)(2k + 3)
ψk(ξ)+ k(k − 1)

(2k − 1)(2k − 3)
ψk−2(ξ)

]
= 0. (18)

If h 6= 0 this relation is a recursion formula, which determines allψk in terms ofψ0 and
ψ1, using only differentiation and no integration. These functions are also restricted by the
boundary condition

dψk(ξ0)

dξ0
= 0 (19)

which is obtained by substituting (16) in(15d ).
Let equation (18) be multiplied byPk(ξ), and integrated overξ from 1 to ξ0. The term

which contains derivatives ofψk is integrated by parts twice, using the boundary condition
(19) and the differential equation ofPk. In the term which containsξ2, the recurrence
relation ofPk is used twice. This equation then becomes

(ξ2
0 − 1) ψk(ξ0)

dPk(ξ0)

dξ0
= πS2h

ξ2
0 − 1

∫ ξ0

1

[
k − 1

2k − 1
9k−1(ξ)− k + 1

2k + 3
9k+1(ξ)

]
dξ (20)

where

9k(ξ) = (k + 1)

[
Pk+1(ξ)ψk−1(ξ)

2k − 1
− Pk−1(ξ)ψk+1(ξ)

2k + 3

]
. (21)

This case, however, should also be consistent with the assumption thatFn = 0.
Substituting (16) in (13b), the integrations overη can readily be carried out using (12a), if
(13d ) is first transformed by the recurrence relation ofPn to

Gn(ξ, η) = n+ 1

2n+ 1

[
Pn+1(ξ)Pn−1(η)− Pn−1(ξ)Pn+1(η)

]
. (22)

One then obtains∫ ξ0

1

[
Pn+1(ξ)ψn−1(ξ)

2n− 1
− Pn−1(ξ)ψn+1(ξ)

2n+ 3

]
dξ = 0=

∫ ξ0

1
9n(ξ) dξ. (23)

It should be noted that equation (20) applies to every value of the indexk, while
equation (23) is only valid for the particular valuen. This n was used for the definition
of the (arbitrary) potential in section 3, but without specifying its value there. It should
also be noted that all of the equations here are linear, which implies that more than one
value of n may be used, and that expressions with different values ofn may be added
together. In particular, if both a special valuen = ν and n = ν + 2 are taken together in
the definition of the potential, equation (23) applies to both of them. For the particular case
in which k = ν+ 1, the right-hand side of equation (20) vanishes, soψk(ξ0) = 0 for this k.
But this result is not compatible with equation (19), because a solution of a second-order
differential equation cannot be zero at the same point at which its derivative is zero, unless
it is identically zero.

The conclusion is thus that there is no solution to the nucleation problem for the
homogeneous case besides the curling mode, and in looking for any other mode it must be
assumed thatFn 6= 0. It must be emphasized, though, thatn is still an arbitrary integer.
The above proof only requires that eithern+ 2 or n− 2 is also considered for everyn, but
it does not determine thisn. In the previous study [2], a combination ofthree values ofn
was used, but two have just been shown to be sufficient.
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5. The lower bound

For a non-zeroFn, it can be readily checked by substitution that

B1 = − 2cnFn(ξ2
0 − 1)

πS2h(ξ2− η2)
gn(ξ, η) and B2 = −2cnFnn2(n+ 1)(ξ2

0 − 1)

πS2h(ξ2− η2)
Gn(ξ, η)

(24)

is a solution of the differential equations (15a) and (15b). But this particular solution does
not satisfy the boundary conditions of(15d ). Therefore, it is necessary to add to it a
solution of thehomogeneousequations to impose the boundary conditions. This addition
can be done by means of series expansions of the form

B1 = q0

[
gn(ξ, η)

ξ2− η2
+ q1

∞∑
k=2

f
(1)
k (η2)(ξ2

0 − ξ2)k − q2
∂

∂ξ0

(
gn(ξ0, η)

ξ2
0 − η2

)]
(25a)

and

B2 = q0n
2(n+ 1)

[
Gn(ξ, η)

ξ2− η2
+ q1

∞∑
k=2

f
(2)
k (η2)(ξ2

0 − ξ2)k − q3
∂

∂ξ0

(
Gn(ξ0, η)

ξ2
0 − η2

)]
(25b)

where

q0 = −2cnFn(ξ2
0 − 1)

πS2h
q1 =

{
1 for oddn

ξη for evenn
(25c)

and

q2 = ξ2− ξ2
0

2ξ0


1 for oddn

ξ

ξ0
for evenn

q3 =


ξ2− ξ2

0

2ξ0
for odd n

ξ − ξ0 for evenn.

(25d)

It obviously satisfies the boundary conditions.
If this solution is substituted in the differential equations (15a) and (15b), recurrence

relations can be worked out for evaluating the coefficientsf
(1)
k andf (2)k in terms ofFn. Then

Fn has to be found which is consistent with the substitution of theseB1 andB2 into (13b).
However, all of this complicated calculation can be bypassed by a method which has already
been used in [2]. In this method, equation (15a) is multiplied bygn(ξ, η)/(ξ2 − η2), and
(15b) is multiplied byn2(n+1)Gn(ξ, η)/(ξ

2−η2), then these equations are added together,
and the result is integrated overξ from 1 to ξ0, and overη from −1 to 1. It is seen that
the terms which containS2h in the differential equations add up to an expression which is
proportional toFn, according to (13b). All of the other terms are also proportional toFn,
when (25a) and (25b) are used to substitute forB1 andB2 in this equation. The condition
Fn 6= 0 allows a division of the equation byFn, which is thus eliminated altogether. After
obvious integrations by parts where derivatives with respect toξ and η occur, and after
substituting from (14b) and (25c), the resulting equation can be rearranged as a second-
order algebraic equation inh,

h2

�1(ξ0)
+ 2h�2(ξ0)− �3(ξ0)

πS2
= 0 (26)

with

�1(ξ) = −Q
′
n(ξ)

P ′n(ξ)
= Qn−1(ξ)−Qn+1(ξ)

Pn+1(ξ)− Pn−1(ξ)
(27)

�2(ξ0) = 2n+ 1

4

∫ 1

−1

∫ ξ0

1

[(
gn(ξ, η)

n(n+ 1)

)2

+ (nGn(ξ, η))
2

]
dξ dη

ξ2− η2
(28)
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and

�3(ξ0) = 2n+ 1

4
(ξ2

0 − 1)2
∂

∂ξ0

∫ 1

−1

[(
gn(ξ0, η)

n(n+ 1)(ξ2
0 − η2)

)2

+
(
nGn(ξ0, η)

ξ2
0 − η2

)2
]

dη.

(29)

To complete the calculation, it is still necessary to carry out the integrations in these
equations, but this part is left for the next section. It is first noted that the quadratic
equation (26) already yields the required eigenvalue, without going through the details of
the solution of the differential equations. According to this equation, alower boundto the
buckling nucleation field is

−h(buck)
n = �1(ξ0)

{
�2(ξ0)+

√
[�2(ξ0)]

2+�3(ξ0)/
[
πS2�1(ξ0)

]}
. (30)

This lower bound has to be compared with the nucleation field for the coherent rotation,
which is [2]

−h(rot)
n = ξ0

[
ξ0− 1

2
(ξ2

0 − 1) ln
ξ0+ 1

ξ0− 1

]
(31)

and with the one for curling, which is [8] proportional to 1/S2. The proportionality factor
is a rather complicated function of the aspect ratio,m, of the ellipsoid, and for simplicity it
is approximated here by a linear function, taking

−h(curl)
n = 1.0791+ 0.5287/m

S2
(32)

which is a good approximation for large values ofm. Moreover, the curvature of the
exact function, as plotted in figure 6 of [10] or figure 1 of [11], is such that the linear
approximation in equation (32) is more negative than the exact eigenvalue, thus making
it a rigorous upper bound for the true curling mode. Therefore, no mistake is made in
comparing with a lower bound of the buckling mode.

6. Integrations

The main difficulty in carrying out the integrations in (28) and (29) is the existence of the
expression in the denominator, which does not look integrable. Therefore, the first step
used here is series expansion in Legendre polynomials, namely

gn(ξ, η)

ξ2− η2
= n(n+ 1)

n−1∑
k=0

∗(2k + 1)Pk(ξ)Pk(η)− 2
dPn(ξ)

dξ

dPn(η)

dη
(33a)

and

nGn(ξ, η)

ξ2− η2
=

n−1∑
k=0

∗(2k + 1)Pk(ξ)Pk(η) (33b)

where the star designates summation over odd values ofk if n is even, and summation over
even values ofk if n is odd. These relations were proved by mathematical induction.

When these series are substituted into (28) and (29), the integrations overη involve
(12a), and other well-known relations, or ones which are readily derived from them. In
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particular, all of the integrations overη in (28) are∫ 1

−1
ηPn(η)

dPn(η)

dη
dη = 2n

2n+ 1

∫ 1

−1

[
dPn(η)

dη

]2

dη = n(n+ 1) (34a)∫ 1

−1
(1− η)2

[
dPn(η)

dη

]2

dη = 2n(n+ 1)

2n+ 1

∫ 1

−1
Pn−1(η)

dPn(η)

dη
dη = 2. (34b)

Using these equations in (28) and rearranging,

�2(ξ0) =
∫ ξ0

1

{
n(n+ 1)Pn+1(ξ)Pn−1(ξ)+ 2

n(n+ 1)

[
dPn(ξ)

dξ

]2

− dPn(ξ)

dξ

[
Pn+1(ξ)+ Pn−1(ξ)

] }
dξ. (35)

Hence,

�2(ξ) = n(n+ 1)

2
ξPn+1(ξ)Pn−1(ξ)− n(n

2+ n+ 2)

2(n+ 1)
ξ [Pn(ξ)]

2

− n(n− 1)

2(n+ 1)
Pn(ξ)Pn−1(ξ)+ ξPn−1(ξ)− Pn(ξ)

n+ 1

dPn(ξ)

dξ
(36)

because the derivative of this expression is equal to the integrand of (35), and it is zero at
the lower bound,ξ = 1. Similarly,

�3(ξ)

(2n+ 1)(ξ2− 1)2
= dPn(ξ)

dξ

[
ξ2+ 1

2ξ

dPn(ξ)

dξ
− 2

n(n+ 1)

d2Pn(ξ)

dξ2

]
− nPn(ξ)

2ξ

[
nPn(ξ)+ Pn−1(ξ)

ξ

]
. (37)

These expressions complete the calculation of the buckling lower bound of equation (30).
In the actual computations they have to be evaluated numerically forξ which is very nearly
1, for which the advice of [12] on how to computeQn is not practical, leading to large
errors. Instead, some transformations of the definition in [12] in terms of the hypergeometric
function lead to the more practical equation

Qn(x) = 1

xn+1n!

∞∑
k=0

(2k + n)!
22k+1(k!)2

[
ln

(
4x2

x2− 1

)
− Ak,n

](
x2− 1

x2

)k
(38a)

with

Ak,n =
k+[n/2]∑
l=k+1

1

l
+ 2

k+[(n+1)/2]∑
l=k+1

1

2l − 1
+

k∑
l=1

1

l(2l − 1)
(38b)

where the square brackets designate the largest integer included in their argument. A similar
usage of the Gauss hypergeometric series yields

Pn(x) =
n∑
k=0

(n+ k)!
(n− k)!(k!)2

(
x − 1

2

)k
(39)

which is useful for computing both the Legendre polynomials and their derivatives, when
the argument is very nearly 1.
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Figure 1. The difference between the eigenvalue for nucleation by coherent rotation and the
lower bound for nucleation by the buckling mode, for the reduced semi-minor axisS = 1.0,
as a function of the aspect ratio,m of a prolate spheroid. The numbers on the curves are the
values of the parametern.

7. Results

The difference thus computed between the eigenvalue for nucleation by coherent rotation,
equation (31), and the lower bound for nucleation by the buckling mode, equation (30),
is plotted in figure 1 for the particular reduced radiusS = 1.0, and for various values of
the (arbitrary) integern. It is seen from the figure that this difference is positive (i.e. the
coherent rotation has a less negative eigenvalue than the lower bound for the buckling mode)
above a certain value of 1/m. Such a positive value means that buckling cannot take place
in that region, and it may only exist for a smaller 1/m, i.e. for a largerm than the crossover
point. It is also clear from the figure that the crossover moves towards smaller values of
1/m with increasingn, so the region in which bucklingmay exist keeps shrinking with the
use of a largern. This behaviour is typical, and the figure is qualitatively the same for all
values ofS.

A similar behaviour is also seen in figure 2, which compares the lower bound for
nucleation by the buckling mode with the eigenvalue for nucleation by the curling mode,
for the caseS = 1.02. This value ofS is slightly below the turnover from coherent rotation
to curling, and for thisS the buckling mode should still be compared with the coherent
rotation. Only for still larger values ofS does curling become an easier mode than the
coherent rotation, and the buckling should be compared with it. Such a comparison is
plotted in figure 3 for the case whereS = 1.1, which is well within the region in which
curling is easier than coherent rotation. It is seen from the figure that for thisS, curling is
also easier than the lower bound for the buckling mode. Similar results are obtained for all
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Figure 2. The difference between the eigenvalue for nucleation by curling and the lower bound
for nucleation by the buckling mode, for the reduced semi-minor axisS = 1.02, as a function
of the aspect ratio,m of a prolate spheroid. The numbers on the curves are the values of the
parametern.

values ofS above the transition, and on the whole there is no conflict between curling and
buckling. Once the curling is easier than coherent rotation, it becomes the only possible
nucleation mode. This result is different from the one in the previous study [2], in which
buckling could not be completely ruled out above the transition from coherent rotation to
curling. The reason is that the valuesn = 2 andn = 3, used [2] in that study, turn out
to be special cases with an atypical behaviour. Forn > 4, however, there is a sharp and
clear-cut distance between the curves for the curling nucleation field versusm and the one
for the buckling, and they do not cross each other.

The results of all the computations are summarized in figure 4. Above a certain curve,
which looks like a straight line in the small region shown, only curling is possible. Below
that curve, coherent rotation takes over, except for in a small region of a very large aspect
ratiom, in which a third mode has not been ruled out, and itmay be possible. This region
keeps shrinking steadily with increasingn, but its border is shown for two cases only, in
order to avoid crowding the figure. The cases aren = 8 (dotted curve) andn = 13 (full
curve). The edge of the triangle for the case in whichn = 13 is atm ≈ 500, which proves
that there cannot be any third mode for prolate spheroids whose aspect ratio is 500:1 or
smaller.

It is possible in principle to shrink this region even further by using larger values ofn.
And it is not particularly difficult to do it with the analytic expressions for all of the integrals.
The only difficulty is in handling values ofξ which are very close to 1, which occur when
m is large; see equation (4c). In plotting figure 4 it was necessary to deal withξ = 1+10−8,
and for such values it is necessary to be careful even with the simplest expressions. For
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Figure 3. As figure 2, but for a reduced radiusS = 1.1.

Figure 4. The possible nucleation modes in a prolate spheroid with an aspect ratio (major to
minor axis)m, and a reduced semi-minor axis,S, defined in equation (5). Only curling, or
coherent rotation, are physically possible in the regions so marked. If any third mode exists
at all, it can only be in the little quasi-triangle, around the question mark. Its border has been
computed forn = 13, but the border for the larger region obtained forn = 8 is also shown for
comparison, as the dotted curve.
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example,ξ2− 1 is evaluated to a higher accuracy if expressed as(ξ + 1)(ξ − 1), for such a
value ofξ . The present program could not handleξ = 1+ 10−9 at all, and it was therefore
decided to stop atn = 13. Aspect ratios larger than 500:1 are not practical anyway, and the
effort needed to extend the theory beyond that limit does not seem justified. But it should
be noted that it is not that big an effort, and that it is relatively simple to use larger values
of n, if needed.
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